

Achievements in the liquid sewage collection, transmission, treatment, recycle and reuse.

The water balancing chart is given below:

Design Calculation:

Combined Effluent Treatment Plant with capacity of 3000 KLD.

Raw Water Combined Effluent Characteristics

Parameters	Unit	Range
рН		6 - 8
Total Suspended Solids	mg/l	50 - 200
BOD 3 days @ 27ºc	mg/l	100 - 350
COD	mg/l	400 – 900
Oil & Grease	mg/l	2 – 25

Treated Water Combined Effluent Characteristics

Parameters	Unit	Range	
рН		6.5 - 9	
Total Suspended Solids	mg/l	20	
BOD 3 days @ 27ºc	mg/l	10	
COD	mg/l	50	
Ammonical Nitrogen (NH4 – N)	mg/l	5	
Total Nitrogen (N – Total)	mg/l	10	
Total Coliform	MPN/100 mL	<100	
Fecal Coliform	MPN/100 mL	<100	

Collection Tank

Retention Time : 4 Hrs
Average Flow Rate : 3000/24

125 m³/hr Volume of the Equalization Tank

Required : 500 cum

 $\begin{array}{ll} \text{Size of the tank existing} & : 6.0 \text{ m Dia x } 6.0 \text{ m LD} \\ \text{Size of the tank proposed} & : 8.5 \text{ m Dia x } 6.0 \text{ m LD} \\ \end{array}$

Total capacity of the tank provided – 509.85 Cum.

Hence the collection tank provided is adequate to treat the volume of combined effluent

generated.

Aeration Tank

Flow (Q) : 3000 Cum/day. Inlet B.O.D (So) : 350 mg/l MLSS (X) : 3000 mg/l

(F/M) : 0.2

 $(F/M) & : (Q*So)/(X*V) \\ Volume of aeration tank required & -1750 Cum. \\ Ouantity & : 4 Nos.$

Size of the tank provided

 $\begin{array}{lll} \mbox{Aeration Tank - I} & : 20.0 \mbox{m x } 10.0 \mbox{m x } 2.5 \mbox{m (500 Cum)} \\ \mbox{Aeration Tank - II} & : 15.0 \mbox{m x } 20.0 \mbox{m x } 2.4 \mbox{m (720 Cum)} \\ \mbox{: 15.0 \mbox{m x } 20.0 \mbox{m x } 2.4 \mbox{m (720 Cum)} \\ \end{array}$

Aeration Tank – IV : 15.0 m x 20.0 m x

2.4m (720 Cum) Volume of aeration tank provided is 2660 cum.

Clarifier tank

Combined effluent generation : 3000 KLD
Recirculated Flow, say 50% : 1500 KLD
Total volume of combined effluent : 4500 KLD
Average : 187.5 cum/hr

 $\begin{array}{ll} \text{Retention time provided} & -4 \text{ hrs.} \\ \text{Volume of tank required} & -750 \text{ m}^3 \end{array}$

Size of the tank (Existing) – 12.0 Dia x 6.0 m.

Size of the tank (proposal) $$-5.0\ m$$ Dia x 6.0 m. Total Volume of clarifier tank provided is 796.75

cum.

Pressure Sand Filter (2 nos.)

Flow for one filter - 1500 KLD

Average Flow – 63 cum.

Assuming velocity of 10 Cum/hr/Sq.m

Area of filter required $-63/10 = 6.3 \text{ m}^2$.

Pressure Sand Filter - I

 $\begin{array}{ll} \mbox{Diameter of the filter provided} & -2.0 \ \mbox{m} \\ \mbox{Area of the filter} & -3.14 \ \mbox{Sq.m} \\ \mbox{Height of pressure sand filter provided} & -2.0 \ \mbox{m} \end{array}$

Size of the PSF – I - 2.0 m Dia x 2.0 m HOS

Pressure Sand Filter - II

Diameter of the filter provided -2.4 mArea of the filter -4.52 Sq.mHeight of pressure sand filter provided -1.5 mSize of the PSF – II -2.4 m Dia x 1.5 m HOS Total area of pressure sand filter provided -7.66 Sq.m

Activated Carbon Filter (3 Nos)

Flow for one filter - 1000 KLD Average Flow - 42 cum.

Assuming velocity of 10 Cum/hr/Sq.m

Area of filter required $-42/10 = 4.2 \text{ m}^2$.

Activated Carbon Filter - I

Diameter of the filter provided -1.5 mArea of the filter -1.77 Sq.mHeight of pressure sand filter provided -1.75 m

Size of the ACF – I – 1.5 m Dia x 1.75 m HOS

Activated Carbon Filter - II

Diameter of the filter provided -1.2 mArea of the filter -1.13 Sq.mHeight of pressure sand filter provided -1.70 m

Size of the ACF – II – 1.2 m Dia x 1.70 m HOS

Activated Carbon Filter - III

7.66 Sq.m

Sludge Drying Bed (10 nos.)

Sludge applied to drying beds : @ 100 kg/MLD Sludge applied : 250 kg/day Specific gravity : 1.015 Solid content : 1.5%

Volume of the sludge : 16.42 cum/day Considering monsoon etc, total no. of

cycle in one year: 33 Nos.

Period of each cycle : 365/11 = 33 days.

Volume of sludge per cycle : 181 cum. Spreading a layer of 0.6 m / cycle area of beds required: 181/0.6 = 302 Sq.m Total area of sludge drying bed required : 302 Sq.m

Sludge drying bed provided

 $\begin{array}{lll} \text{No. of beds} & : 10 \text{ nos.} \\ \text{Dimension of each bed} & : 6.0 \text{ m x } 6.0 \text{ m} \\ \text{Area of each bed} & : 36 \text{ Sq.m} \end{array}$

Filter Press

Average Flow

BOD

BOD Load TSS Load

Total Sludge

Considering moisture percentage

Cake Holding capacity / day

Filtration time for one batch

Plate size

Cake Volume / chamber

7 Batch per day

litres)

Nos. of Chamber required

Nos. of plate required

- 3000 m3/day.

-350 mg/l

- 1050 kg/day

- 900 kg/day

- 1950 kg/day

- 35%

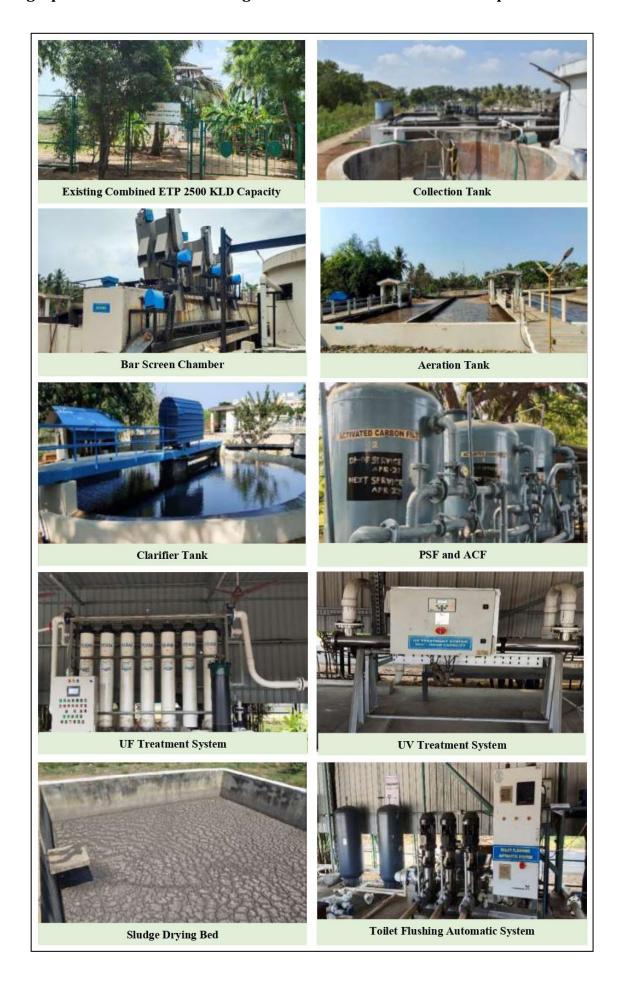
 $-1700 \times 100/65 = 2615.3$ litres

- 3hrs.

– 610 mm x 610 mm.

- 7.10 litres/chamber.

- 2615.3/7 = 373.6 litres (say 374


-374/7.1 = 53 (Approx.)

54

Specification of Combined ETP Units (3000 KLD)

S.	S. December 1		Existing	Proposed
No	Description	Quantit	Size of the units	Size of the units
		y		
1.	Collection – I	1	6.0 Dia x 6.0 m LD	-
2.	Collection - II	1	-	8.5 m Dia x 6.0 m LD
3.	Aeration Tank – I	1	20.0m x 10.0m x 2.5m	-
4.	Aeration Tank – II	1	15.0m x 20.0m x 2.4m	-
5.	Aeration Tank – III	1	15.0m x 20.0m x 2.4m	-
6.	Aeration Tank – IV	1	15.0m x 20.0m x 2.4m	-
7.	Clarifier tank - I	1	12.0 Dia x 6.0 m.	-
8.	Clarifier tank - II	1		5.0 m Dia x 6.0 m
9.	Pressure Sand Filter - I	1	2.0 m Dia x 2.0 m HOS	-
10.	Pressure Sand Filter - II	1	2.4 m Dia x 1.5 m HOS	-
11.	Activated Carbon Filter –	1	1.5 m Dia x 1.75 m HOS	-
12.	Activated Carbon Filter –	1	1.2 m Dia x 1.70 m HOS	_
12.	II	1	1.2 III Dia x 1.70 III 1103	
13.	Activated Carbon Filter –	1	2.5 m Dia x 1.85 m HOS	-
	III			
14.	Sludge drying bed	10	6.0 m x 6.0m	-
15.	UV Disinfection system	1	30 m ³ /hr	-
16.	UV Disinfection system	1	50 m ³ /hr	-
17.	Filter Press	54	-	610 mm x 610 mm

Photographs of the Combined Sewage Treatment Plant at SRIHER Campus

